功能
LLM 提取
通过LLM从页面中提取结构化数据
使用Firecrawl抓取和提取结构化数据
Firecrawl利用大型语言模型(LLMs)高效地从网页中提取结构化数据。以下是具体方法:
-
模式定义: 使用JSON Schema(遵循OpenAI工具模式)定义要抓取的URL和所需的数据模式。此模式指定了您希望从页面中提取的数据结构。
-
抓取端点: 将URL和模式传递给抓取端点。可以在以下位置找到该端点的文档: 抓取端点文档
-
结构化数据检索: 以您定义的模式接收抓取到的数据。然后,您可以在应用程序中使用这些数据或进行进一步处理。
这种方法简化了数据提取过程,减少了手动操作并提高了效率。
提取结构化数据
/scrape (带提取) 端点
用于从抓取的页面中提取结构化数据。
curl -X POST https://api.firecrawl.dev/v0/scrape \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer YOUR_API_KEY' \
-d '{
"url": "https://docs.firecrawl.dev/",
"extractorOptions": {
"mode": "llm-extraction",
"extractionPrompt": "Based on the information on the page, extract the information from the schema. ",
"extractionSchema": {
"type": "object",
"properties": {
"company_mission": {
"type": "string"
},
"supports_sso": {
"type": "boolean"
},
"is_open_source": {
"type": "boolean"
},
"is_in_yc": {
"type": "boolean"
}
},
"required": [
"company_mission",
"supports_sso",
"is_open_source",
"is_in_yc"
]
}
}
}'
{
"success": true,
"data": {
"content": "Raw Content",
"metadata": {
"title": "Mendable",
"description": "Mendable allows you to easily build AI chat applications. Ingest, customize, then deploy with one line of code anywhere you want. Brought to you by SideGuide",
"robots": "follow, index",
"ogTitle": "Mendable",
"ogDescription": "Mendable allows you to easily build AI chat applications. Ingest, customize, then deploy with one line of code anywhere you want. Brought to you by SideGuide",
"ogUrl": "https://docs.firecrawl.dev/",
"ogImage": "https://docs.firecrawl.dev/mendable_new_og1.png",
"ogLocaleAlternate": [],
"ogSiteName": "Mendable",
"sourceURL": "https://docs.firecrawl.dev/"
},
"llm_extraction": {
"company_mission": "Train a secure AI on your technical resources that answers customer and employee questions so your team doesn't have to",
"supports_sso": true,
"is_open_source": false,
"is_in_yc": true
}
}
}
使用Python SDK
from firecrawl import FirecrawlApp
# 使用您的API密钥初始化FirecrawlApp
app = FirecrawlApp(api_key='your_api_key', version='v0')
class ArticleSchema(BaseModel):
title: str
points: int
by: str
commentsURL: str
class TopArticlesSchema(BaseModel):
top: List[ArticleSchema] = Field(..., max_items=5, description="Top 5 stories")
data = app.scrape_url('https://news.ycombinator.com', {
'extractorOptions': {
'extractionSchema': TopArticlesSchema.model_json_schema(),
'mode': 'llm-extraction'
},
'pageOptions':{
'onlyMainContent': True
}
})
print(data["llm_extraction"])
使用JavaScript SDK
import FirecrawlApp from '@mendable/firecrawl-js';
import { z } from 'zod';
const app = new FirecrawlApp({
apiKey: 'fc-YOUR_API_KEY',
version: 'v0',
});
// 定义提取内容的架构
const schema = z.object({
top: z
.array(
z.object({
title: z.string(),
points: z.number(),
by: z.string(),
commentsURL: z.string(),
})
)
.length(5)
.describe('Hacker News上排名前五的故事'),
});
const scrapeResult = await app.scrapeUrl('https://news.ycombinator.com', {
extractorOptions: { extractionSchema: schema },
});
console.log(scrapeResult.data['llm_extraction']);
```### 使用 Go SDK
```go Go
import (
"fmt"
"log"
"github.com/mendableai/firecrawl-go"
)
func main() {
app, err := firecrawl.NewFirecrawlApp("YOUR_API_KEY")
if err != nil {
log.Fatalf("Failed to initialize FirecrawlApp: %v", err)
}
jsonSchema := map[string]any{
"type": "object",
"properties": map[string]any{
"top": map[string]any{
"type": "array",
"items": map[string]any{
"type": "object",
"properties": map[string]any{
"title": map[string]string{"type": "string"},
"points": map[string]string{"type": "number"},
"by": map[string]string{"type": "string"},
"commentsURL": map[string]string{"type": "string"},
},
"required": []string{"title", "points", "by", "commentsURL"},
},
"minItems": 5,
"maxItems": 5,
"description": "Top 5 stories on Hacker News",
},
},
"required": []string{"top"},
}
llmExtractionParams := map[string]any{
"extractorOptions": firecrawl.ExtractorOptions{
ExtractionSchema: jsonSchema,
},
}
scrapeResult, err := app.ScrapeURL("https://news.ycombinator.com", llmExtractionParams)
if err != nil {
log.Fatalf("Failed to perform LLM extraction: %v", err)
}
fmt.Println(scrapeResult)
}
使用 Rust SDK
Rust
use firecrawl::FirecrawlApp;
#[tokio::main]
async fn main() {
// 使用 API 密钥初始化 FirecrawlApp
let api_key = "YOUR_API_KEY";
let api_url = "https://api.firecrawl.dev";
let app = FirecrawlApp::new(api_key, api_url).expect("Failed to initialize FirecrawlApp");
// 定义提取内容的 schema
let json_schema = json!({
"type": "object",
"properties": {
"top": {
"type": "array",
"items": {
"type": "object",
"properties": {
"title": {"type": "string"},
"points": {"type": "number"},
"by": {"type": "string"},
"commentsURL": {"type": "string"}
},
"required": ["title", "points", "by", "commentsURL"]
},
"minItems": 5,
"maxItems": 5,
"description": "Top 5 stories on Hacker News"
}
},
"required": ["top"]
});
let llm_extraction_params = json!({
"extractorOptions": {
"extractionSchema": json_schema,
"mode": "llm-extraction"
},
"pageOptions": {
"onlyMainContent": true
}
});
let llm_extraction_result = app
.scrape_url("https://news.ycombinator.com", Some(llm_extraction_params))
.await;
match llm_extraction_result {
Ok(data) => println!("LLM Extraction Result:
{}", data["llm_extraction"]),
Err(e) => eprintln!("LLM Extraction failed: {}", e),
}
}